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X-linked adrenoleukodystrophy (ALD) is a peroxisomal metabolic disorder with a highly
complex clinical presentation. ALD is caused by mutations in the ABCD1 gene, and is
characterized by the accumulation of very long-chain fatty acids in plasma and tissues.
Disease-causing mutations are ‘loss of function’ mutations, with no prognostic value
with respect to the clinical outcome of an individual. All male patients with ALD develop
spinal cord disease and a peripheral neuropathy in adulthood, although age of onset
is highly variable. However, the lifetime prevalence to develop progressive white matter
lesions, termed cerebral ALD (CALD), is only about 60%. Early identification of transition
to CALD is critical since it can be halted by allogeneic hematopoietic stem cell therapy
only in an early stage. The primary goal of this study is to identify molecular markers
which may be prognostic of cerebral demyelination from a simple blood sample, with
the hope that blood-based assays can replace the current protocols for diagnosis.
We collected six well-characterized brother pairs affected by ALD and discordant for
the presence of CALD and performed multi-omic profiling of blood samples including
genome, epigenome, transcriptome, metabolome/lipidome, and proteome profiling. In
our analysis we identify discordant genomic alleles present across all families as well as
differentially abundant molecular features across the omics technologies. The analysis
was focused on univariate modeling to discriminate the two phenotypic groups, but
was unable to identify statistically significant candidate molecular markers. Our study
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highlights the issues caused by a large amount of inter-individual variation, and supports
the emerging hypothesis that cerebral demyelination is a complex mix of environmental
factors and/or heterogeneous genomic alleles. We confirm previous observations about
the role of immune response, specifically auto-immunity and the potential role of
PFN1 protein overabundance in CALD in a subset of the families. We envision our
methodology as well as dataset has utility to the field for reproducing previous or
enabling future modifier investigations.

Keywords: multi-omics, LCMS, methylation, lipidomics, proteomics, bioinformatics, X-ALD, cerebral
demyelination

INTRODUCTION

Adrenoleukodystrophy (ALD) is a rare peroxisomal X-linked
degenerative disease (MIM 300100), caused by deficiency of
the ABC half-transporter encoded by the ABCD1 gene. Over
850 different disease-causing loss-of-function ABCD1 mutations
have been reported1. Mutations lead to a defect in the import
of very long-chain fatty acids (VLCFA) into peroxisomes for
further degradation and a subsequent accumulation of VLCFA
in plasma and tissues. The overall incidence is 1:15,000 (Moser
et al., 2016). In males, ALD often manifests with adrenocortical
insufficiency in childhood (50% before 10 years) (Huffnagel et al.,
2019b). During adulthood virtually all male and, eventually,
female patients develop a progressive myelopathy termed
adrenomyeloneuropathy (Engelen et al., 2012; Engelen et al.,
2014; Huffnagel et al., 2019a). Additionally, during childhood or
sometimes through adulthood male patients can develop cerebral
demyelination, termed cerebral ALD (CALD). It is estimated
that eventually more than 60% of male patients develop CALD
(Kemp et al., 2012; de Beer et al., 2014). Untreated CALD is
often progressive, but can spontaneously arrest in 10–20% of
patients. It causes vegetative state and death 2–3 years after
onset, so early identification as well as careful and frequent
monitoring of all male ALD patients is necessary. If diagnosed
early, hematopoietic stem cell therapy can be used to halt further
progression of cerebral ALD (Pierpont et al., 2017). However,
the precise mechanism by which hematopoietic stem cell therapy
arrests CALD progression is not clear. To ensure timely stem
cell therapy for males with CALD, affected individuals are
subjected to rigorous neurological and MRI follow-ups that pose
considerable physical, emotional and financial burden. As such,
the unresolved and unpredictable phenotypic variability of ALD
is a crucial roadblock for patient care.

As newborn screening for ALD has recently been
implemented, there is an urgent need for identification of
markers which may be prognostic of cerebral demyelination
in many newly diagnosed patients around the world (Moser
et al., 2016; Barendsen et al., 2020). Our research focuses on
delineating the enormous phenotypic variability in ALD, with
the overarching goal of identifying biomarkers prognostic
of the advancement to CALD. If successful in identifying
biomarkers with prognostic power, then the biomarkers could

1www.adrenoleukodystrophy.info

replace existing expensive monitoring protocols and potentially
highlight therapeutic targets, as is the case with other rare genetic
disorders. For example, in Spinal Muscular Atrophy, the genes
Plastin-3 (PLS3) and Coronin 1C (CORO1C) were identified
as protective modifiers, unraveling impaired endocytosis as a
rescue mechanism for the phenotype (Hosseinibarkooie et al.,
2016). These modifiers were identified from studies focusing on
siblings with discordant disease severity, and are opening novel
therapeutic targets for treatment. Patients with ALD may benefit
from similar research advances.

Phenotypic discordance in individuals with the same ABCD1
genotype, including siblings and even monozygotic twins
(Korenke et al., 1996), strongly supports the hypothesis that
other modifying factors play a role in the progression of the
disease (Wiesinger et al., 2015; Kemp et al., 2016). As yet,
however, modifier studies using candidate gene approaches have
had little success and resulted in the identification of only a single
modifier gene, cytochrome P450 family 4 subfamily F member
2 (CYP4F2), with limited prognostic power (van Engen et al.,
2016). Other candidate variants have been proposed, including a
candidate cis-regulatory SNP in the promoter region of ELOVL
fatty acid elongase 1 (ELOVL1)—a gene involved in VLCFA
synthesis (Ofman et al., 2010). The functional consequences
of this SNP with respect to the expression of ELOVL1 in
the brain is still under investigation (Kemp et al., 2012). The
lack of modifier identification could be due to the limited
genomic search space that was explored, which to date has
focused only on candidate gene approaches. Owing to the
small sample size inherent to rare disease cohorts, traditional
genome wide association studies (GWAS) approaches are not
feasible. Employing a strategy which utilizes family structure may
allow for a narrower search space compared to GWAS, while
allowing a broader interrogation of the genome than candidate
gene approaches. Beyond a search space which involves genetic
mapping, other high throughput “omics” technologies allow
the exploration of complex biological systems at many levels.
It is now possible to identify differences between individuals
or phenotypic states at the DNA, methylated DNA, RNA,
lipid, and protein levels. Our goal is to delineate personal
molecular characteristics that contribute to phenotypic variability
in male ALD siblings enabling the identification of biomarkers
that prognosticate onset and progression of CALD. Because
modifying factors could also include environmental, epigenetic
and microbiome factors (Génin et al., 2008; Argmann et al.,
2016), multi-omics approaches are key.
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TABLE 1 | Summary of patients within ALD cohort.

Family Age Phenotype ABCD1 mutation ELOVL1
(A > G)

CYP4F2
(C > T)

APOE
rs429358

APOE
rs7412

APOE
Genotype

1 28 CALD c.1390C>T G/G T/T T/T C/C ε3/ε3

1 28 Non-CALD G/G C/T T/T C/C ε3/ε3

2 30 CALD c.1899delC A/G C/C T/T C/C ε3/ε3

2 30 Non-CALD A/G C/C T/T C/C ε3/ε3

3 38 CALD c.1992-2A>G A/G C/C T/T C/C ε3/ε3

3 36 Non-CALD A/G C/C T/T C/C ε3/ε3

4 6 CALD c.659T>C A/A C/T T/T T/T ε2/ε2

4 8 Non-CALD A/A C/T T/T T/T ε2/ε2

5 16 CALD c.1866-2A>T A/G C/C T/C C/C ε3/ε4

5 18 Non-CALD G/G C/C T/C C/C ε3/ε4

6 27 CALD c.892G>A A/A C/C T/C C/C ε3/ε4

6 25 Non-CALD A/G C/C T/C C/C ε3/ε4

The family number, age at sample collection, ALD phenotype, ABCD1 variant, and genotypes for previously associated modifier alleles for all patients within the cohort.

In this study, we carefully selected a set of six well
characterized brother pairs who have the same ABCD1
pathogenic allele but are discordant for cerebral ALD: one
brother has CALD and the other has no white matter lesions
on MRI (non-CALD). The brother pairs are close in age
(no more than 2 years apart), and range in age from 6–
38 years at sample collection (Table 1). Blood samples were
obtained from each of these patients and underwent profiling
through five omics technologies (Figure 1) including whole
genome sequencing (WGS), RNA sequencing (RNA-seq), EPIC
DNA methylation (DNAm) microarray, lipidomic profiling via
liquid chromatography mass spectrometry (LCMS), and protein
profiling by LCMS. Within this study our choice to use blood
samples, either lymphocytes or plasma, is inherent to our research
question which is whether we can identify molecular markers
of cerebral demyelination in an accessible sample in patients.
Uncovering the pathophysiology of cerebral demyelination
would require sampling of tissue from the brain and the
blood–brain barrier, which is beyond the scope of this project.
Each omics dataset was processed to quantify/map features,
undergo quality control analysis, and then used for group-wise
comparisons between CALD and non-CALD phenotype groups
using univariate analysis. We first investigated the potential for a
single, shared modifier allele which could discriminate the two
groups from the WGS data. Next, we systematically compared
the groups for each of these omics data sets to find potential
markers specific to the phenotype. We aggregated the datasets
together after performing pairwise comparisons and identified
heterogeneous signals within sub-groups of the six families. To
the best of our knowledge this is the most comprehensive study to
date in terms of systems biology characterization of human ALD
using a unique collection of samples.

MATERIALS AND METHODS

Project Overview
An overview of the project can be found in Figure 1,
which depicts the project phases including patient

phenotyping/sample collection, multi-omic data collection,
feature quantification/processing, quality control, and group-
wise comparisons between phenotype groups. In this project, six
brother pairs affected by ALD but discordant for the presence
of cerebral ALD were included. We only selected the brother
pairs for analysis, and did not include siblings or parents as
our focus was on differences between two patients both affected
by ABCD1 mutations. Patients were selected from the Dutch
cohort, an ongoing prospective natural history study (Huffnagel
et al., 2019c). Blood was drawn from the brother pairs and
lymphocyte pellets or plasma was isolated. Lymphocyte pellets
were used for whole WGS, RNA-seq, and DNAm. Fasted
plasma was used for downstream LCMS analysis identifying
either lipid or protein abundances. For control samples,
anonymized adult male plasma samples were used in the
lipidomics analysis. Data was then processed independently for
each of the platforms including feature quantification/mapping,
followed by platform specific quality control and group-wise
comparisons. Details regarding sample collection, platform
specifications, and specific methodology for each analysis
performed in this project can be found in the Supplementary
Methods section.

Patient Selection and Phenotyping
All patients were selected from the Dutch cohort, an ongoing
prospective cohort study. All patients are examined yearly (by
ME) and undergo an MRI of the brain at the time of examination.
Samples are collected in the PEROX biobank. The presence
of cerebral ALD is defined as the presence of white matter
lesions in a distribution consistent with ALD. The classification
of the sibs (CALD versus non-CALD) is valid at this time,
but the non-affected individuals can theoretically convert to
cerebral ALD.

All samples were collected and stored in the PEROX
Biobank according to a protocol (METC2015_066) approved
by the biobank review board of the Amsterdam UMC
(BioBank Toetsingscommissie AMC). All patients provided
written informed consent for storage and use of materials for
medical research.
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FIGURE 1 | Project overview. An overview of the data and processes involved in the project including samples from two brothers across unrelated families, blood
isolated into lymphocytes and plasma, and then profiling with five omics technologies including WGS for the genome, DNA methylation (DNAm) via the 850K EPIC
microarray, transcriptome profiling with RNA sequencing (RNA-seq), metabolome profiling with liquid chromatography mass spectrometry (LCMS), and protein
profiling with LCMS. These data are then taken through feature quantification/processing, quality control metrics, and group-wise comparison through univariate
modeling.
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Feature Quantification and Data
Processing
For each platform, the data was processed independently
following best-practices guidelines from the groups generating
the datasets. Details regarding feature quantification and
assignment at the gene, lipid, protein, and differentially
methylated region (DMR) level can be found in the
Supplementary Methods section.

Univariate Modeling of CALD vs.
Non-cerebral ALD
Using univariate modeling techniques the prognostic power of
each lipid, transcript (RNA) or protein is calculated as:

y = ρβ+ fam+ ε (1)

in which y is the observed value and ρ the phenotype (0 or 1), β is
the weight and fam the family cofactor. ε is the remaining error.
Because methylation of DNA changes with age (McEwen et al.,
2018), age is also included as a cofactor:

y = ρβ+ fam+ age+ ε (2)

when analyzing the DNAm results. The significance (p-value) of
the discriminating phenotype (fixed) and family (random) effects
are determined by ordinary least squares modeling (OLS) of the
data using the model from Eq. 1 in case of lipid and proteomic
data (Harrison et al., 2018). In the case of methylation and
RNA sequencing data the p-values are determined by maximum
likelihood estimates (MLE) of the fixed and random effects using
Limma (Ritchie et al., 2015) and edgeR, respectively (Robinson
et al., 2010; Ritchie et al., 2015).

Allele Comparisons in Whole Genome
Sequencing Data
Details on data processing, including variant calling and
comparing across samples can be found in the Supplementary
Methods section. Briefly, allele comparisons were performed
in whole genome sequencing data on jointly genotyped
variant datasets. For SNVs and indels, variants were jointly
genotyped and converted into a GEMINI database (Paila et al.,
2013). This database was then queried to identify subsets of
discriminating alleles. For structural variants and mobile element
insertions, custom scripts were used to identify discordant
genotypes from annotated jointly genotyped variant tables.
Discordant genotypes, stored as unique variant identifiers,
were then placed into Intervene for intersection analysis
(Khan and Mathelier, 2017).

Aggregation of Signal Across Platforms
To assess the added value of combining the different platforms,
significant signals prior to multiple testing correction were
collected for each omics platform and intersected at the
annotated gene level (hg19). Because of the lack of a clear
mapping of lipids to genes the lipidomics platform was excluded
from this intersection allowing 4 possible intersections; DNAm-
RNA, DNAm-Protein, RNA-Protein, and the overall intersection

of DNAm-RNA-Protein. Further investigation of a shared signal
was performed by clustering the first three principal components
(i.e., capturing the most variance) of the log fold changes (top 10
and p < 0.05) of the combined platform data (including lipids).

Assessing Contribution of Family Effect
per Feature
The data were modeled using the equations (above) in which both
phenotypic and family effects are estimated. We partitioned the
variance for the lipids, proteins, and RNA datasets to identify
the contribution of the family effect, the phenotype effect,
or the residual variance using the variancePartition package
(Hoffman and Schadt, 2016). The same was repeated for the
DNA methylation dataset with the addition of the age, and
phenotype:age variance terms. Next, we plotted the top two
principal components for each omics dataset before and after the
removal of the variance contributed from the family effect with
the limma:removeBatchEffect tool (Ritchie et al., 2015). Lastly, to
determine the sensitivity/specificity of the findings for leaving out
a one or two families all the analyses (excluding methylation data
analysis) that were run for the case of all families were repeated
with a one or two families left out (e.g., without fam 1, without
fam 2, without fam 1 and fam 2, etc.). We encapsulated this
information in separate upset plots for each platform.

RESULTS

Lipidomics Analysis of a Fatty Acid
Storage Disorder
Patients affected by ALD have a buildup of VLCFAs within cells
in the body. Recent mass spectrometry advances allow for broad,
untargeted profiling of lipids (Huffnagel et al., 2019a). We applied
LCMS from plasma samples of each of the patients within this
cohort as well as matched control samples (eight fasted plasma
samples from healthy males were used as controls).

First, we identified differential lipid abundances between ALD
(both non-CALD and CALD) samples and control samples,
with 139 lipids passing the threshold of p-value < 0.05
(Eq. 1, OLS), and 17 lipids remaining significant after multiple
testing correction (Bonferroni) (Supplementary Figure S1 and
Supplementary Table S1) (Methods). The measured lipids are
plotted as a volcano plot, that is the log2 fold change of
ALD over control versus corrected p-value (Figure 2A). We
confirm that untargeted lipidomic profiling can distinguish ALD
from control samples via principal component analysis, and
also capture the expected differentially abundant lipids between
control and ALD samples including the known ALD biomarker
LPC(26:0) (Figures 2B,C).

Next, we compared CALD and non-CALD groups for
differences in lipid abundance which could act as markers
of cerebral demyelination. Of note, the principal component
analysis which separates ALD from control did not separate
CALD from non-CALD, i.e., the differences in lipid profiles
between these two phenotypes are much less pronounced
than the differences separating ALD patients from controls

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 June 2020 | Volume 8 | Article 520

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00520 June 23, 2020 Time: 15:39 # 6

Richmond et al. Multi-Omic Investigation Cerebral Demyelination xALD

FIGURE 2 | Lipidomic analysis of ALD. The univariate analysis comparing the lipid abundances between control vs. ALD, and CALD vs. non-CALD is depicted.
(A) Volcano plot showing the log2 fold change between ALD and control (CRTL) samples for all of the measured metabolites within the LCMS assay, versus the
-log10 transformed adjusted p-value. (B) Principal component analysis plot showing the first two principal components which can discriminate between control
(blue) and ALD (orange: non-CALD, green: CALD) samples. (C) Boxplots showing the abundances of a known marker for ALD, LPC(26:0), and another lipid
differentially abundant between ALD and control samples. Values are lipid abundances measured on LCMS. (D) Volcano plot showing the log2 fold change between
CALD and non-CALD samples versus the -log10 transformed p-value. (E) Boxplots for lipids different between CALD and non-CALD before p-value correction. For
(A,D), the lipids are colored according to their assigned class and their size corresponds to the lipid chain length. For boxplots: ∧ represents unadjusted p-values of
comparison between ALD and control, * represents unadjusted p-values of comparison between CALD and non-CALD.

(Figure 2B). The measured lipids are plotted as a volcano plot,
that is the log2 fold change of CALD over non-CALD versus
transformed p-value (Figure 2D). In total 22 lipids were found
to have different abundances between the two groups with
p-value < 0.05, however, none of the lipids remained significant
after correcting for multiple testing (Supplementary Table S2).
The observed differences are much smaller between CALD and
non-CALD compared to ALD and control, as highlighted by
the differences in fold change axes (Figures 2A,D). Interestingly,
there was a higher abundance in the non-CALD group for
several key VLCFAs involved in ALD including PC(44:4) and
Cer(d42:3), the latter reaching p-value < 0.05 (Figures 2C,E).
While some lipids show a relatively large fold change between
CALD and non-CALD groups as a whole, the signal is not
consistent for every family. An example of this can be seen

in SM(d36:2) or PS(43:3) (Supplementary Figure S2). This
limits the prognostic power of these lipids as consistent markers
delineating the phenotype. Lastly, we observed a large range of
lipid abundances within the control group for several of the
differential lipids between CALD and non-CALD, which could
indicate that these lipids are variable within healthy individuals
and the signal we observe between CALD and non-CALD could
be due to noise or variation in the healthy population (Figure 2E
and Supplementary Figure S1).

Discordant Genotype Analysis for the
Identification of a Modifier Allele
Using whole genome sequencing, we investigated a range of
variant classes for discordant alleles between siblings. These
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discordant alleles are then intersected across multiple families
under the hypothesis that polymorphic differences contribute to
cerebral demyelination.

We first focused on alleles which emerged from previous
modifier studies to see if they are confirmed. Proposed modifier
alleles from target gene studies have identified two candidates
within ELOVL1 (rs839765) and CYP4F2 (rs2108622) (Kemp
et al., 2012; van Engen et al., 2016). Within this cohort,
those modifier alleles do not segregate with ALD phenotype
(Table 1), nor are the genotypes shared or lacking in the
confidently phenotyped CALD patients. Furthermore, it has
been suggested that apolipoprotein E (APOE) genotypes–which
are a combination between two SNP sites to produce APOE2
(ε2), APOE3 (ε3), and APOE4 (ε4) alleles–may be markers
of disease severity and cerebral progression (Orchard et al.,
2019a). These APOE alleles do not segregate with disease nor
are they shared by all CALD patients. Together, these results
suggest limited prognostic power of these alleles, and perhaps
supports heterogeneous contributions of genetic background to
disease progression.

Next, for several variant classes, we performed a discordant
analysis between siblings and intersected these alleles across
families (Figure 3). We considered four genotypic categories
termed dominant protective, recessive protective, dominant
damaging, or recessive damaging based on the genotype
(heterozygous: dominant or homozygous: recessive) and the
sibling which carries the genotype (CALD: damaging or non-
CALD: protective). Performing this genotypic analysis on SNVs
and indels, we identified ∼6.0 × 105 discordant candidate
variants in the dominant categories from each family, and
∼3.0 × 105 discordant candidate variants from the recessive
categories (Figure 3A and Supplementary Table S3). Despite the
large number of discordant candidates per family, intersecting
these sets across families reduces the candidates dramatically,
resulting in only two candidate variants at the intersection
of all six families (Figure 3B) (Supplementary Table S4).
A recessive damaging variant downstream of the PYM homolog
1 (WIBG/PYM1) gene (rs7980776) and recessive protective

allele (rs55639747/rs61327784) within the intronic region of
the deuterosome assembly protein 1 (CCDC67/DEUP1) gene
(Supplementary Figures S3, S4). We validated our approach
with a parallel pipeline utilizing the new DeepVariant tool
(Poplin et al., 2018), which claims higher accuracy than GATK
HaplotypeCaller (Supplementary Table S4). There is high
concordance between the two variant call sets, and they produced
the same two variants within the intersection. A single additional
variant was reported using DeepVariant under the recessive
damaging model, however, the variant did not pass the manual
inspection quality assessment. In silico analysis of both variants
suggests these variants have little functional effect, and the
associated genes did not link to the cerebral demyelination
phenotype (Supplementary Results).

For the other variant classes, including structural variants
(SVs) and mobile element insertions (MEIs), we performed
joint genotyping to identify shared and discordant alleles in
the same manner as SNVs and indels. We identified ∼1,500
and ∼400 SVs in the dominant and recessive categories,
respectively, and ∼400 and ∼100 MEIs (Supplementary
Table S3). Unsurprisingly, these discordant events were not
shared across more than 4 families (Supplementary Table S4).
We further manually inspected the regions around the discordant
SNVs/indels identified above, and did not find any other
segregating SVs or MEIs.

Lastly, we extended our discordance analysis to the
mitochondrial genome to examine candidate alleles which
may show evidence of heteroplasmy which are not shared
between two siblings. We identified that between 129 and 547
mitochondrial variants per sample, of which 52 to 476 are
heteroplasmic, and none are consistent discriminating variants
between phenotypes shared across all families (Supplementary
Table S5). Further, if we aggregated at the gene level, we did not
find any heteroplasmic variants consistent across the same gene.

In recognition of a study limitation – the fact that some
non-CALD patients may progress to CALD – we further
intersected alleles shared by all CALD patients. These variants
were annotated by impact or as eQTLs defined in GTEx

FIGURE 3 | Discordant genotype analysis. (A) Number of discordant genotypes in each category for each of the six families, with description of genotypes for
non-CALD and CALD pairs per genotypic category (per-category means are displayed). (B) Upon intersection of discordant genotypes, the number of variants which
exist within any intersection with set sizes of 1–6, meaning the set size of 6 is the intersection of all families, and a set of 1 are discordant variants only found in one
family.
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(Supplementary Methods). There were 48 variants present
in the heterozygous state across all CALD patients, where
no non-CALD patients were heterozygous (Supplementary
Table S6). Of these, a haploblock containing 20 variants was
identified overlapping the two pore segment channel 2 (TPCN2)
gene, including a missense variant (rs3750965) (Supplementary
Figure S5). Interestingly, the only patient which was homozygous
for this variant is the youngest non-CALD patient within the
cohort, suggesting that this gene could be of significance should
the patient develop the cerebral demyelination phenotype.

Univariate Modeling of Phenotype
Differences Across Omics Platforms
Beyond identifying a single genetic modifier allele, the omics
platforms allow for the identification of candidate molecular
signatures which can discriminate between the CALD and
non-CALD phenotypes. Using univariate analysis, we identify
differences across each platform at the feature level, to search for
a signal which can be used as a marker for transition to CALD.
Further, we leverage these molecular signatures to provide insight
into the pathogenesis of cerebral demyelination.

Transcriptomics
Examining RNA expression using RNA-seq provides a
measurement for nearly all expressed protein coding genes
in the genome. Differential gene expression was calculated
between the two phenotype groups using the univariate model
accounting for family effect (Eq. 1). There were 199 genes found
with a p-value < 0.05, although none remained significant
after multiple testing correction (Bonferroni) (Figures 4A,B
and Supplementary Figure S6). This is likely due to the low
number of samples and relatively small differences that were
observed between the two groups. Furthermore, many of the
genes identified as significant were inconsistent in one or
more of the sibling pairs, limiting the diagnostic utility as
a marker (Figure 4B). Despite not having significant genes
after multiple testing correction, we performed enrichment
analysis using GO (gene annotation) and KEGG (pathway
annotation) to derive insights based on the 199 genes passing
a threshold of p-value < 0.05 (Supplementary Figure S7).
Of note, elevated interferon related processes suggest that the
host may be reacting to pathogens activating the immune
system (Hoffmann et al., 2015). It is therefore no surprise that 3
chemokines (CXCL6, CXCL8 and IFI27) were found in the top
10 differentially expressed genes. Amongst the remainder of the
proteins encoded by the top 10 differentially expressed genes,
the D-Xylulokinase gene (XYLB) encodes for the protein that
catalyzes the ATP-dependent phosphorylation of D-xylulose to
produce xylulose-5-phosphate (Xu5P) therefore XYLB may play
an important role in metabolic disease given that Xu5P is a key
regulator of glucose metabolism and lipogenesis (Bunker et al.,
2013). The glycine amindinotransferase (GATM) gene has been
associated with statin intolerance (Willrich et al., 2018) and its
function to catalyze creatine and possibly affect the production of
ceramides (Turer et al., 2017). Lastly, the myosin-binding protein
1 (MYOB1B) gene codes for a protein that may participate in
a process critical to neuronal development and function such

as cell migration, neurite outgrowth and vesicular transport
(Sittaramane and Chandrasekhar, 2008).

Epigenomics
DNA methylation has been linked to changes in gene expression,
and is an important readout of some environmental impacts
upon the cell. Measuring DNA methylation is typically done at
specific methylation sites (CpGs), and then aggregated across
regions where several sites have similar trends of methylation
levels to find differentially methylated regions (DMRs). Here, we
used the MethylationEPIC BeadChip which targets over 850,000
CpGs. Using LIMMA modeling including age as cofactor (Eq. 2)
264 CpGs had a nominal p-value < 0.0005. Of these 264 CpGs, 16
passed the delta beta (i.e., difference between methylation levels
of CALD vs. non-CALD) of >5% (Supplementary Table S8).
When aggregating these loci into a DMR analysis, we identified 22
regions passing thresholds of FDR < 0.05 and >10% methylation
change (Figure 4C). Multiple CpGs map to the same gene and
show a large delta beta, which we identified in the genes protein
tyrosine phosphatase receptor type N2 (PTPRN2) and regulatory
of G protein signaling 14 (RGS14) (Figure 4D). RGS14 may alter
calcium levels to enhance long term potentiation and learning
(Lee et al., 2010). Due to its presence in neurosecretory vesicles,
PTPRN2 has been implicated in insulin and neurotransmitter
exocytosis (Sengelaub et al., 2016). Furthermore, PTPRN2
hypermethylation has been identified within a separate study
which compared DNA methylation between CALD and non-
CALD patients (Schlüter et al., 2018).

Proteomics
In addition to profiling lipids, LCMS can be used for high
throughput profiling of proteins thus enabling the identification
of differential protein abundances between samples. Applying
proteomics to these 12 patients yielded a quantification of
5,862 peptides which were matched against 351 protein groups.
Comparing CALD and non-CALD groups, we found 16
proteins with differential abundances (p < 0.05) (Figures 4E,F,
Supplementary Figure S8, and Supplementary Table S9).
Investigating the top hits we find 4/16 proteins associated with
immunoglobulin heavy chain (IGHV4-34, IGHV3-30, IGHV3-7,
and P0DOX6), 2/16 are associated with immunoglobulin kappa
variables (IGKV6D-21 and IGKV1D-33), and with P0DOX8
also being related to immunoglobulin, half of these proteins
are related to the immune system (Parra et al., 2016). All
of these immunoglobulin proteins were up-regulated in the
CALD samples. Also related to the immune system is the
CD5 molecule like (CD5L) protein, a secreted glycoprotein that
participates in host response to bacterial infection (Sanjurjo et al.,
2015) and is also known to regulate lipid biosynthesis (Wang
et al., 2015). Beyond immune system proteins, we identified
proteins associated with the brain or with involvement in
lipid metabolism. Extracellular matrix protein 1 (ECM1) has
been associated with lipoid proteinosis in which brain damage
develops over time and is associated with the development of
cognitive disabilities and epileptic seizures (Zhang et al., 2014).
The role of apolipoprotein L1 (APOL1) is not yet clear but
it has been associated with the lipid biology in the podocyte
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FIGURE 4 | Multi-omic analysis. (A) Volcano plot showing p-value and log2 fold change of gene expression from RNA-seq. Significant genes at p < 0.05 (orange
dots), non-significant genes (blue dots). (B) Selected genes plotted as normalized RNA-seq values with boxplots for each group where each line/point is colored by
family. (C) Volcano plot of DNA methylation over CpG probes from EPIC array, with non-significant (p > 0.05) DMR probes (blue dots), significant CpGs at the DMR
level (red Xs), higher methylated non-CALD probes (orange dots), and higher methylated CALD probes (green dots). (D) DNAm over two significant DMRs within
PTPRN2 and RGS14, points colored by family and lines colored by phenotype, with shading denoting inner quartile range. (E) Volcano plot of protein levels from
LCMS with non-significant proteins (blue), significant proteins with log2 fold-change (CALD/non-CALD) of –1 to 1 (green), and log2 fold-change greater than 1
(orange). (F) Selected proteins which passed the p-value threshold of 0.05.

(Fornoni et al., 2014). Copy number variants of the multiple
inositol-polyphosphate phosphatase 1 (MINPP1) gene have been
associated with varying levels of inositol hexaphosphate (IP6)

(Waugh, 2016) and IP6 has been reported to suppress lipid
peroxidation (Foster et al., 2017). Apolipoprotein 3 (APOC3)
is a key player in triglyceride-rich lipoprotein metabolism
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(Ramms and Gordts, 2018) and regulated by the peroxisome
proliferator-activated receptor-α (Liu et al., 2015). Lastly, profilin
1 (PFN1) has recently been reported in a CALD study which
looked at markers of autoreactivity, identifying anti-PFN1
antibodies present in a large proportion of CALD patients
(Orchard et al., 2019b). Together, these protein signals could
have significance with respect to the pathophysiology of cerebral
demyelination, by highlighting differences around proteins
involved in lipid metabolism as well as immune response.

Estimating Variance of Family Effect
The univariate modeling of CALD vs. non-CALD for each of
the individual omics platforms was unsuccessful in identifying
significant hits after multiple testing correction. While traditional
multiple testing correction methods may be too strict for the
omics technologies, we still cannot rule out the possibility that
our top hits arise by chance due to variability. Furthermore, our
top hits per platform still exhibited a high amount of variance
between families, and a lack of consistent signal in molecular
features across the entire cohort (Figures 4B,D,F). Within our
model we included the effect of the family on the level of the
measured signal, and thus we are able to capture the contribution
of family structure to a feature’s abundance (Eq. 1 and Eq. 2).
To illustrate the contribution of these effects, we partitioned the
variance contribution within our linear models (Methods). The
phenotype effect, total family effect, and residual variance were
extracted from our model for each of the features within the
RNA-seq, proteomics, and lipidomics platforms (Supplementary
Figure S9). As DNAm varies with age we additionally extracted
the variance contributed from the age or phenotype-by-age
effects. Clearly, the contribution of variance from the phenotype
is small in the majority of features across all omics datasets, and
a large residual variance indicates a high level of noise present in
these high dimensional assays (Supplementary Figure S9). We
further demonstrated the heterogeneity in the data by subsetting
the families and then repeating comparisons between CALD and
non-CALD phenotypes. By leaving out one or two families, the
β in equations 1–2 are re-evaluated for the RNA, protein, and
lipid datasets. The number of candidates increased with removal
of each family, which could be interpreted as potential modifier
signatures present in a subset of families, but absent from others
(Supplementary Figure S10).

Integrating Multi-Omic Datasets
As it was our intention to identify molecular marker features
underlying cerebral demyelination, we investigated the omics
datasets independently to identify a consistent signal. However,
owing to a large amount of inter-family variance, we are limited
in our ability to identify a statistically significant feature which
separates the two phenotypes. As the multi-omic assays should
be complementary to each other, we searched for genes which
showed differences between the groups in multiple assays. We
searched the phenotype comparison between all families, as
well as the results from the leave-one-out analysis, wherein we
withheld a family and repeated the modeling between the two
phenotype groups (Methods). Intersections showed overlapping
evidence at the DNA methylation and RNA levels, as well

as overlap between RNA and protein levels, for eight genes.
Focusing only on the intersection of all families, only PTPRN2
has differential signal from both DNA methylation and RNA
levels (Figures 4B,D). Additional genes were identified in the
leave-one-out subsets (Table 2).

In the multi-omic data we observed that several
of the molecular features have trends of differential
abundance/expression in a subset of the families. To illustrate
this, and attempt to identify clusters within the data, we gathered
per-family log2-fold-change of CALD over non-CALD for the
top hits from the lipid, protein, and RNA datasets. We took this
approach because it removes the differences in absolute levels
of expression between families. Noticeably, the fold-change
values are not consistent for each family, as evidenced by a lack
of consistent coloring for each of the features (rows) within
the heatmap (Supplementary Figure S11A). Family 2 and
family 6 were more similar in their CALD/non-CALD ratios
for these features. This is further supported by a principal
component analysis, wherein family 2 and family 6 are separated
from the other four families on the first principal component
(Supplementary Figure S11C). However, this trend does not
hold when the set of features is increased to all hits with
p-value < 0.05 across the three platforms, as family 1 and 5
cluster together with the other four families as an outer group
(Supplementary Figure S11B). Thus, clustering these families
based on top differential features does not reveal confident
sub-groupings within the small cohort.

Specific Modifier Hypothesis Testing
Finding molecular markers which delineate cerebral
demyelination in patients with ALD is an ongoing research
problem. Additionally, understanding the pathophysiology of
cerebral demyelination and potential disruption of the blood
brain barrier has implications for diseases beyond ALD. Different
hypotheses have been suggested, including involvement of the
immune system in autoreactivity or as a response to severe viral

TABLE 2 | Intersections of significant hits from multiple platforms.

Comparison DNAm and
RNA

DNAm and
Protein

RNA and
Protein

DNAm and RNA
and Protein

all_families PTPRN2(↑ – ↓) – – –

wo_fam_1 – – – –

wo_fam_2 – – – –

wo_fam_3 HLA-DQB1(↓ – ↓),
IL5RA(↓ – ↑),
KIF19 (↑ – ↓)

– – –

wo_fam_4 – – – –

wo_fam_5 – – ICAM1(↑ – ↓),
APOL1(↑ – ↑),
CD14(↑ – ↑)

–

wo_fam_6 – – JCHAIN(↑ – ↑) –

For each comparison including all families, and each possible 5 × 5 comparison
between CALD and non-CALD, the significant hits (p-value < 0.05 before multiple
testing correction) from DNA methylation (DNAm), RNA-sequencing (RNA), and
protein LCMS (Protein) were intersected. (↑ means up-regulated/higher for CALD,
↓ means lower in CALD). Intersections with no hits are marked by ‘–.’
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infections. Using the multi-omics dataset, which gives us insight
into the complexities of the underlying complex biological
system, we tested recently proposed modifiers of cerebral
demyelination to see if there is evidence of their discriminatory
power within the blood samples profiled in our dataset.

It has recently been demonstrated that autoreactivity to PFN1
occurs in patients affected by CALD, and may be a discriminating
marker of cerebral demyelination (Orchard et al., 2019b). We
investigated differences in PFN1 methylation, RNA, and protein
levels between CALD and non-CALD patients to see if this
observation is confirmed in our dataset. At the methylation and
RNA level, we did not see a consistent signal differentiating the
CALD and non-CALD groups, but at the protein level we observe
an increased amount of PFN1 in the CALD group for four out
of six families (Figures 4F, 5A,B). This is consistent with the
observation from the previous study that not all patients exhibit
PFN1 autoreactivity, and the increased protein levels could
precede or act as biomarkers of the autoimmune response within
the subset of patients who exhibit this trend. While autoreactivity
and increased protein abundance are not equivalent, the authors
of the previous study showed significant increase in PFN1 protein
abundance in the cerebrospinal fluid.

Another study focused on DNA methylation (DNAm) as
a marker of CALD, and investigated the intact white matter
of brains from patients affected by ALD with and without
the cerebral demyelination phenotype (Schlüter et al., 2018).
Whether or not the signals they identify confirm within
the blood within a separate cohort is important if these
proposed marker genes are to be used within newborn
screening. Within their analysis they identified differential
methylation signals at several genes, two of which are lipin 1
(LPIN1) and unc-45 myosin chaperone A (UNC45A). Within
this cohort, we see no differential methylation signal in the
blood for LPIN1, and a slight hypermethylation (although
not significant) in UNC45A (Figures 5C,E). Investigating the
RNA shows that while both these genes are highly expressed,
there are no consistent differences between the two phenotype
groups (Figures 5D,F).

Lastly, it is possible that a viral infection causing an immune
response is the phenotypic trigger for progression to CALD,
as this is suggested to be a candidate environmental modifier
from other cerebral demyelination diseases including multiple
sclerosis (Libbey et al., 2014). As is the case in several cancers,
RNA-seq can capture actively expressing viral RNA within a
sample. To test the hypothesis of whether or not we could
observe different expressing viruses within the RNA-seq of these
patients, we used the tool Centrifuge to identify traces of viral
(or bacterial) sequences (Supplementary Table S10) (Kim et al.,
2016). Aside from identifying human, synthetic construct, and
endogenous retrovirus, no significant viral or bacterial sequences
were identified.

DISCUSSION

In this study we took a systems biology approach to identify
personal molecular characteristics, either genetic or molecular

markers, which may prognosticate the onset of cerebral
demyelination in patients affected by ALD. Identifying a single
modifier consistent across all individuals has importance because
of its potential utility as prognosticator or biomarker heralding
the transition to cerebral demyelination, and this carries
tremendous treatment implications.

Our cohort was comprised of carefully phenotyped brothers
affected by ALD who were discordant for the severe cerebral
demyelination phenotype. We collected blood and performed
high throughput experiments to profile the DNA, methylated
DNA, RNA, lipids, and proteins. In summary, we did not find
a strong, convincing, univariate marker which can differentiate
all of the CALD and non-cerebral patients in this small cohort.
There are several explanations for this negative result: the
small cohort with only six discordant sibling pairs of different
ethnic background, the possibility that one or more non-CALD
patients may still develop cerebral demyelination, high inter-
individual variability, and finally the possibility of multiple
modifiers and/or an exogenous or non-genetic modifier such as
infection or physical trauma. In spite of these limitations, we
still emerged with interesting results from each of the omics
platforms from this pilot study including discordant genotypes
separating all CALD and non-CALD patients, confirmations of
recently proposed CALD modifiers, and a suspected involvement
of differential activity within the immune system in patients with
cerebral demyelination.

In our genetic approach, we identified two discordant
genotypes shared between all six brother-pairs: an intronic SNV
in DEUP1 and an SNV downstream of WIBG. Although in silico
analysis of the variants and the function of the associated
genes did not link these alleles to the cerebral demyelination
phenotype, it is of interest to see if they replicate in a larger
cohort. Examining variants shared by all CALD patients led
to the identification of a missense polymorphism in TPCN2, a
gene which localizes to lysosomal membranes. This exists in a
segregating haplotype block, and is absent from all non-CALD
patients except for family 4 – the youngest patient with the
highest chance to develop cerebral demyelination – where the
haploblock is homozygous. How this variant segregates in a
larger patient cohort could be of interest. None of the previously
proposed modifier alleles, emerging from GWAS or target-gene
studies, confirmed within our cohort.

Although our analysis was burdened by high inter-individual
variability, we were able to identify univariate molecular
markers with increased confidence due to replication–by
multiple omics levels and/or by confirming previously proposed
modifier markers. A recent study Schlüter et al. (2018) showed
CALD patients with DNA hypermethylation within PTPRN2,
which we confirm in our study and support with decreased
mRNA expression in CALD patients (both platforms reaching
p-value < 0.05 before multiple testing correction). The same
study showed hypermethylation of LPIN1 and UNC45A, the
latter of which we confirm (although not statistically significant)
as slightly hypermethylated in CALD samples. Of note, that
study used brain tissue to derive their signal whereas we use
blood samples. Another study utilized CSF and blood plasma,
including longitudinal data from ALD patients pre- and post
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FIGURE 5 | Testing previously suggested markers. DNA methylation and mRNA abundance for PFN1 (A,B), UNC45A (C,D), and LPIN1 (E,F). DNA methylation is
shown for all CpGs associated to the listed genes, with the non-CALD mean methylation shown as a blue line with standard error shading, and the orange dashed
line showing the mean methylation of CALD. Individual points are shown and colored by family. RNA expression is shown as a boxplot for non-CALD and CALD
phenotype groups, with individual families labeled with family 1 as blue, family 2 as orange, family 3 as green, family 4 as red, family 5 as purple, and family 6 as
brown.
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cerebral demyelination, to identify autoreactivity to Profilin 1
(PFN1) within CALD patients (Orchard et al., 2019b). They
observed auto-antigens to PFN1 in the blood, and increased
PFN1 levels in CSF, in ∼50% of CALD patients. In our
cohort, four out of six patients exhibit increased PFN1 protein
levels, in-line with the observation that PFN1 phenotype is not
ubiquitous across all CALD patients. While increased abundance
of PFN1 in the plasma was not investigated in the previous
study, it is encouraging to see the higher levels of PFN1
in the plasma of the CALD patients within this cohort. We
further contribute to this observation by showing no differences
at the DNAm or mRNA levels, pointing toward a separate
mechanism of upregulation/overabundance of PFN1. The role
of PFN1 overabundance, and its potential link to autoreactivity,
is a potential avenue of further research should these findings
confirm in a larger cohort.

As ALD is a peroxisomal disorder, the lipidomic analysis
presented here is of interest. The lipid profiling data confirmed
previous observations regarding VLCFA abundance differences
in ALD samples when compared to controls. Specifically, the
phosphatidylcholines (PC) species containing very long-chain
fatty acids are more abundant in the ALD group compared to
the control group. Furthermore, the suitability of LPC(C26:0)
to function as a marker for ALD in newborn screening was
confirmed. Differences in lipid abundance between CALD and
non-CALD groups did not reach significance after multiple
testing correction, likely due to a lack of consistent lipid
differences between all brother pairs. Nevertheless, the chain
lengths and position of the double bonds of the differential lipids
between CALD and non-CALD could provide insight into the
pathophysiology of CALD as CALD patients had lower levels of
sphingomyelin and its precursor ceramide, in line with disease
progression (Supplementary Figure S1). The specificity of the
lipids into play is further illustrated by the fact that for some
ceramides (d43:3) the control group has higher abundances than
ALD samples while for other ceramides (d46:4) the abundances
are much lower. This specificity of individual sphingolipids in
CALD could be of interest as the they have previously been
demonstrated to be relevant in other peroxisomal disorders
(Herzog et al., 2018a,b).

Beyond identifying phenotype-stratifying molecular features,
we investigated the top hits at the gene-level from each
omics platform for any relation to the pathophysiology of
CALD. Literature searches highlighted genes involved in lipid
metabolism, the nervous system, and the immune system.
Gene Ontology and KEGG pathways further supported these
observations. While our analysis highlights the potential for
these systems to be affected, we are hesitant based on the
available data to draw conclusions about the impact of cerebral
demyelination with respect to the inflammatory system. The
inflammatory response and its link to cerebral demyelination is
the subject of ongoing research, including investigation of the
initiation and maintenance of inflammation and its contribution
to clinical features (van der Voorn et al., 2011; Musolino et al.,
2012). Larger datasets, and datasets of relevant affected tissues,
are needed to draw conclusions from differentially abundant
molecular features.

Throughout this work we have identified certain limitations
of our approach which should be considered in future work
focused on modifiers of rare disease, especially for other inborn
errors of metabolism (e.g., Gaucher disease). First, we suffered
from having a small number of samples and a high number of
observed features. For future univariate marker investigations we
recommend focusing only on protein or mRNA and increasing
the number of samples. Second, our genetic analysis was limited
by the possibility of future transition to the CALD state for any
of our non-CALD patients, especially those patients who have
not reached maturity. Recent epidemiological analysis shows that
cerebral demyelination can occur throughout the lifetime of an
ALD patient (Huffnagel et al., 2019b), so genetic studies should
focus on older (60–70 years old) patients who have not developed
the cerebral demyelination phenotype. While discordant brother
pairs reaching old age are challenging to find, a collection of
genotyped non-CALD patients older than 60–70 years of age
could serve as a good control. Third, we are limited in capturing
relevant biological insights because we are profiling blood and not
CSF/brain tissue. We recognize that lymphocytes and plasma are
not ideal to study the pathophysiology of cerebral demyelination,
as that would require samples from the white matter of the brain
or an in vitro model system (e.g., differentiated iPSCs). We chose
to use blood-based samples in this project as our goal was to
find a modifier signal or molecular marker from an accessible
source within affected patients. There are future opportunities for
multi-omic profiling of these more relevant samples to identify
the molecular underpinnings of cerebral demyelination. Lastly,
while we profile DNA methylation, we don’t capture other
components of the environment which could have an impact
including microbiome and pathogen exposure history.

With newborn screening now a reality for ALD,
prognostication and timing of therapy becomes more relevant
than ever before; thus modifier studies to decipher a protector
or marker for cerebral demyelination will continue (Moser
and Fatemi, 2018). We believe that this dataset can continue
to be mined and used for testing the replication of proposed
phenotypic markers. Further, the data within this study could be
used as part of a larger dataset examining multivariate signals
differentiating the two classes. Whether it is a collection of genetic
markers or a pattern of multiple molecular features, it is clear
that there is a need for a larger sample size. Additional samples
will enable statistical bootstrapping, and allow for additional
insights to be collected from the profiled samples. As such, we
make the measurements within this study available for future
use to the community (see section “Data Availability”), with
the hopes that the data can serve as a secondary confirmation
of new modifier hypotheses, or as part of a larger dataset for
investigating the complex nature of cerebral demyelination.
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