Clinicians and Scientist

Review the standard of care for ALD

Definition

X-ALD is a metabolic disorder characterized by impaired peroxisomal beta-oxidation of very long-chain fatty acids (VLCFA; ≥ C22), which is reduced to about 30% of control levels. Consequently, there is an accumulation of VLCFA in plasma and all tissues, including the white matter of the brain, the spinal cord and adrenal cortex. It is caused by mutations in the ABCD1gene located on the X-chromosome. Mutations in this gene cause the absence or dysfunction of ALDP, a peroxisomal transmembrane protein that transports VLCFacyl-CoA esters from the cytosol into the peroxisome.

Epidemiology

With an estimated birth incidence of 1 in 17,000 newborns (male and female), X-ALD is the most common peroxisomal disorder. It occurs in all regions of the world . Now that newborn screening has become technically feasible and may be implemented in some parts of the world, the true prevalence might be even higher.

Clinical management

Flowchart describing the outpatient management of X-ALD. *If there is no gadolinium enhancement present, consider arrested cerebral ALD and repeat the MRI in 3 months.

x-ald

Boys and adult males with X-ALD

Follow-up in boys and men with X-ALD is important for two reasons: 1) early detection of adrenocortical insufficiency and 2) early detection of cerebral ALD to propose allogeneic hematopoietic stem cell transplantation (HCT) if a HLA-matched donor or cord blood is available. Despite significant mortality risk, allogeneic HCT remains the only therapeutic intervention that can arrest the progression of cerebral demyelination in X-ALD, provided the procedure is performed very early, i.e., when affected boys or men have no or minor symptoms due to cerebral demyelinating disease.

In the future, transplantation of autologous hematopoietic stem cells that have been genetically corrected with a lentiviral vector before re-infusion might become an alternative to autologous HCT, once the very encouraging results obtained in the first two treated patients will have been extended to a larger number of patients with cerebral X-ALD.

If boys or men do not have Addison’s disease it is recommended that they are evaluated yearly by an endocrinologist for adrenocortical dysfunction by measuring the plasma ACTH levels and performing an ACTH stimulation test. Steroid replacement therapy can then be initiated if necessary.

Boys without neurological deficits should be monitored closely for radiological signs of cerebral ALD. CCALD has not been reported before the age of 2.5 years. We recommend an MRI of the brain every 6 months in boys aged 3 to 12 years old to screen for early signs of CCALD. If symptoms occur suggestive of cerebral ALD (for instance declining school performance) the MRI should be performed at the earliest available opportunity, but it is our experience that the detection of brain MRI abnormalities precedes any detectable cognitive dysfunction by at least 6 months to 1 year. After the age of 12 years, the incidence of CCALD decreases, but an MRI scan must be performed yearly or earlier if new symptoms occur. It is important to detect cerebral ALD as early as possible, preferably in the asymptomatic stage with only moderate radiological abnormalities to discuss the possibility to perform allogeneic HCT. Accordingly, if a brain MRI shows abnormalities, even very limited such as an increased signal intensity on T2 or FLAIR sequences in the splenium or genu of the corpus callosum, brain MRI must be repeated within 3 months to evaluate disease progression and in particular to identify the presence of gadolinium rim enhancement of lesions. Because the disease can be very rapidly progressive, it is strongly advised to discuss the possibility of allogeneic HCT as soon as brain MRI abnormalities typical of cerebral ALD are detected. After a successful transplant, the lesions on MRI stabilize and even regress. Treatment results are better the earlier treatment is started.

For adult men with or without signs of AMN, we advise evaluation by a neurologist yearly or bi-annually to screen for symptoms of AMN and to administer symptomatic treatment if necessary (for instance, medication against spasticity). Referral to a rehabilitation physician and urologist will often become necessary.

Adult men can develop cerebral ALD and in our centers, we offer an MRI of the brain every single year. There is no proven treatment for cerebral ALD in adults. It seems likely that allogeneic HCT is also effective in adults with early stage cerebral ALD, but there are no published studies or cases describing this treatment. We tend to consider allogeneic HCT in an adult patient with early stage cerebral ALD, after carefully counseling the patient about the lack of evidence for the treatment and the risk of the procedure which is significantly higher than in boys. Whereas the onset of demyelinating lesions involving the corpus callosum and adjacent parieto-occipital or frontal white matter leaves no doubt about the onset of cerebral ALD, the situation is different when there are only slightly increased signal abnormalities in the pyramidal tracts of AMN patients that gradually become more intense and involve the white matter of the centrum semiovale. This can herald the onset of cerebral ALD, but can also reflect Wallerian degeneration in severe AMN.

For AMN there is no effective disease modifying therapy available yet. Although Lorenzo’s oil (LO) had great promise, several open-label trials have shown that the disease progresses even when plasma VLCFA are normalized by LO treatment. A large randomized placebo-controlled clinical trial was designed to provide a definitive answer, but was unfortunately aborted before completion by the safety monitoring board because of presumed side effects of the placebo treatment. There is also a retrospective study suggesting that if presymptomatic boys are started on LO, it may delay the onset of neurological symptoms. We consider the scientific evidence to support the efficacy of LO weak, and do not offer this treatment to our patients. Regular follow-up in AMN remains important, however, mainly to provide symptomatic treatment.

Lovastatin also lowered plasma VLCFA, but a placebo-controlled trial revealed that lovastatin did not have an effect on the C26:0 levels in peripheral blood lymphocytes and erythrocytes nor on the VLCFA content of the low-density lipoprotein fraction.

More research and new treatments strategies are desperately needed, especially for those affected by AMN, which is relentlessly progressive and causes severe disability. Antioxidants reduce markers for oxidative stress and axonal degeneration in the spinal cord of Abcd1 knockout mice. Based on this observation a clinical trial with anti-oxidants in X-ALD is ongoing in Spain.

Women with X-ALD

Women with X-ALD should be evaluated for the development of neurologic symptoms. Since women with X-ALD very rarely develop adrenocortical insufficiency or cerebral involvement, periodic evaluation of adrenocortical function and brain MRI is not mandatory. Greater awareness among physicians that women can develop neurologic symptoms is important for counseling but also to prevent unnecessary diagnostic tests and erroneous diagnosis. We know of cases of women with X-ALD who underwent cervical laminectomy for presumed cervical spondylogenic myelopathy. For symptomatic women with X-ALD, we advise (as for men with AMN) a yearly evaluation by a neurologist to discuss the indication of rehabilitation, the referral to an urologist and treatment of spasticity and neuropathic pain.
 

Prognosis

It is debatable whether men with X-ALD can remain really asymptomatic for life. It seems probable that there is only presymptomatic X-ALD in men. Although there is no large prospective cohort study to accurately determine the natural history of the disease, several general observations can be made. It is likely that all patients with X-ALD if they survive into adulthood eventually develop myelopathy, i.e. AMN. Usually, symptoms and signs occur from the 3rd decade of life, but much earlier, or much later, is possible. The severity and progression cannot be predicted for individual patients. There is marked variability ranging from men with X-ALD that are wheelchair bound by the age of 25 and others who are able to walk with a cane while in their seventies. This is important when counseling patients: symptoms will occur, but only time will tell how severely affected an individual will be.

Not every boy or man with X-ALD will develop cerebral ALD. About 35-40% of boys with an ABCD1mutation will develop CCALD before reaching adulthood. It can still not be predicted who will develop this devastating manifestation of the disease. Previously it was believed that after reaching adulthood this complication was very rare. However, it is now well established that at least 20% of adult males with the AMN phenotype will develop cerebral demyelination later in life. If this occurs, these patients have the same poor prognosis as boys with inflammatory cerebral ALD.

It is well documented that women develop symptoms that resemble AMN, but there is no prospective study with adequate numbers to really estimate what percentage of women become symptomatic. We recently completed a large prospective cohort study to describe the symptomatology of X-ALD in women (Engelen et al, manuscript in preparation).